Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26705570

RESUMO

Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs.


Assuntos
Antozoários/microbiologia , Biofilmes/classificação , Microbiota/genética , Animais , Sequência de Bases , Carbonato de Cálcio/metabolismo , Região do Caribe , Recifes de Corais , DNA Bacteriano/genética , Ecossistema , Temperatura Alta , Concentração de Íons de Hidrogênio , Compostos de Magnésio/metabolismo , México , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
FEMS Microbiol Ecol ; 82(3): 724-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22775797

RESUMO

Microbialites have played an important role in the early history of life on Earth. Their fossilized forms represent the oldest evidence of life on our planet dating back to 3500 Ma. Extant microbialites have been suggested to be highly productive and diverse communities with an evident role in the cycling of major elements, and in contributing to carbonate precipitation. Although their ecological and evolutionary importance has been recognized, the study of their genetic diversity is yet scanty. The main goal of this study was to analyse microbial genetic diversity of microbialites living in different types of environments throughout Mexico, including desert ponds, coastal lagoons and a crater-lake. We followed a pyrosequencing approach of hypervariable regions of the 16S rRNA gene. Results showed that microbialite communities were very diverse (H' = 6-7) and showed geographic variation in composition, as well as an environmental effect related to pH and conductivity, which together explained 33% of the genetic variation. All microbialites had similar proportions of major bacterial and archaeal phyla.


Assuntos
Archaea/classificação , Bactérias/classificação , Água Doce/microbiologia , Variação Genética , Archaea/genética , Bactérias/genética , Biodiversidade , Evolução Biológica , Fósseis , Água Doce/química , Lagos/química , Lagos/microbiologia , México , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
3.
FEMS Microbiol Lett ; 316(2): 90-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21208268

RESUMO

Heterocyst-forming cyanobacteria are important players at both evolutionary and ecological scales, but to date it has been difficult to establish their phylogenetic affiliations. We present data from a phylogenetic and molecular clock analysis of heterocystous cyanobacteria within the family Rivulariaceae, including the genera Calothrix, Rivularia, Gloeotrichia and Tolypothrix. The strains were isolated from distant geographic regions including fresh and brackish water bodies, microbial mats from beach rock, microbialites, pebble beaches, plus PCC strains 7103 and 7504. Phylogenetic inferences (distance, likelihood and Bayesian) suggested the monophyly of genera Calothrix and Rivularia. Molecular clock estimates indicate that Calothrix and Rivularia originated ∼1500 million years ago (MYA) ago and species date back to 400-300 MYA while Tolypothrix and Gloeotrichia are younger genera (600-400 MYA).


Assuntos
Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Microbiologia Ambiental , Evolução Molecular , Filogenia , Cianobactérias/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...